50 Weapons That Changed Warfare Read online

Page 11


  Navy, and in 1842 the U.S.S. Princeton became the world’s first screw-propelled steamship. Princeton’s engine and drive shaft were located below the waterline for protection, and the ship was able to carry enough guns for a broadside. In 1843, the British steamer Great Britain became the first screw-equipped ship to cross the Atlantic.

  The age of steam had arrived. Ship builders were still hedging their bets by equipping their vessels with masts and rigging that could be used if the engine failed, but it was hard to navigate a paddle wheeler using sails alone. Screw propellers made sailing easier, but even the propeller caused interference.

  The next major improvement in warships was adding armor (something we’ll look at in the next chapter). Another huge advance in steam engines after the introduction of armor was the steam turbine engine, which used a spinning wheel turned by rapidly expanding steam to propel the vessel. These engines made possible the high-speed torpedo boats that threatened the supremacy of the battleship at the turn of the 19th and 20th centuries. At the British Jubilee Naval Review in 1897, the steam launch Turbinia stole the show as it dashed in and out of the line of battleships at the unheard-of speed of 34 1/2 knots. We’ll have another look at these torpedo boats in Chapter 26 on the “locomotive torpedo.”

  Chapter 22

  Iron Floats… and Sinks: Armored Ships

  Monitor and Virginia slug it out in 1862.

  In 1592, Toyotomi Hideoshi, the only peasant in Japanese history to make himself supreme ruler of that ancient empire, invaded the neighboring land of Korea. Hideoshi, called “Old Monkey Face,” but not to his face, was a man of immense ambition and the energy to match it, although his esthetic tastes ran more to gold chamber pots than to his country’s exquisite poetry. After Korea, he planned to conquer China and then the Philippines.

  He never quite made his first goal (Korea). The biggest reason was a Korean secret weapon and an admiral named Yi Sun Shin.

  While the Japanese fleet was unloading at Pusan, several strange-looking objects moved into the harbor. They had no sails. They may have been towed or rowed — accounts differ. All agree, however, that they looked like immense metal turtles. Below their curved iron shells, Yi’s turtle boats had rows of cannons.

  That day the turtle boats, designed by Yi himself, sank 60 Japanese ships and stalled Hideoshi’s invasion at its opening.

  The Japanese eventually began moving up the peninsula. At that time, the Japanese army had more guns per capita than any other in the world — including anywhere in Europe. Almost all of their guns were matchlock harquebuses; they had few cannons. The Koreans had few handheld guns, but quite a few cannons. And they had allies. Chinese troops flooded into the peninsula. The Japanese were better armed, better trained, and more experienced soldiers, but they couldn’t match the Chinese numbers. Then Yi Sun Shin returned with his turtle boats. In 1598, at Chinhae Bay, Yi and his ironclads sank 200 of the 400 Japanese ships. Yi lost his life in the battle, but he saved his country. The rest of the Japanese fleet fled back to Japan, where they brought news of the disaster to the ailing Hideoshi, who promptly died. The Japanese invasion died with him. Korea was to be free of Japanese troops until 1910.

  Fast forward 270 years. Yi Sun Shin and his works have been forgotten everywhere but Korea. In the United States, no one is interested in old tales from exotic places. The country has split into two parts, North versus South, and brothers are fighting brothers. Ships from the North, what is left of the United States, or the “Union,” are blockading ports in the South, or the “Confederacy.”

  Confederate troops captured the navy yard at Gosport, Virginia. The Union made an attempt to destroy everything of value before they evacuated the yard, but the Confederates managed to raise the sunken U.S.S. Merrimack, a 40-gun steam frigate. Confederate naval architects changed the former Union warship into something entirely new. They gave the frigate a sloping super-structure composed of two 2-inch-thick layers of wrought iron. The weight of all that iron pushed the ship low in the water, but the Confederates added still more iron — a 1-inch belt of iron around the hull that extended 3 feet below the waterline. The completed vessel, rechristened the C.S.S. Virginia, had a draft of 22 feet. There was no way it could take the weight of the old Merrimack’s 40 guns. It had four smoothbore cannons on each side and one 7-inch rifled gun at the bow and another at the stern. Even with the reduced armament, Virginia’s draft was too deep to allow movement in shallow water, and its deck was so close to the waterline that steaming on the open ocean would be extremely hazardous.

  The prime Confederate objective, though, was not to create an ocean-going warship. It was to get rid of the Yankee ships blockading Virginia. For that, this new class of ship, called a ram (because its bow carried that ancient weapon of the classical galleys), seemed ideal. On March 8, 1862, the C.S.S. Virginia, chugged into Hampton Roads and confronted five Union warships, the United States Ships Minnesota, Roanoke, St. Lawrence, Cumberland, and Congress. The clumsy, underpowered ram chugged toward Cumberland, firing as she advanced.

  Cumberland fired back at what one witness said looked like “a barn roof floating on the water.” The Union ship’s iron cannonballs merely bounced off the monster, and its shells exploded harmlessly on the armor. The Virginia drove its ram into Cumberland’s hull. When it backed away, the ram was wrenched off, but there was a 7-foot hole in the Union ship. Cumberland went to the bottom, some of its guns still firing as the water closed over them.

  Virginia next engaged the U.S.S. Congress. Its guns proved as potent as its ram. One shot hit Congress’s powder magazine and blew the blockader up. News of the Confederate ironclad’s victories caused a near panic in Washington.

  Ironclads were not unknown to the U.S. Navy. They had already been tried in Europe.

  Until the mid-19th century, all warships were protected by enormously thick hulls of seasoned oak. To make any impression at all on these masses of hard-wood, ships closed to pistol range before firing their cannons. The missiles fired were exclusively solid shot — cast iron cannonballs, sometimes two cannonballs connected with a chain (“chain shot”) or an iron bar (“bar shot”) to take down masts and rip up rigging. In 1822, Colonel Henri Joseph Paixhans, a French army officer, proposed firing shells in naval warfare. Shells, being much lighter for their size than cannonballs, had no chance of penetrating those massive oak hulls, so they had never been used. But Paixhans, being a soldier, was not inhibited by naval tradition. He pointed out that even if a shell did not penetrate one of those wooden walls (if it lodged in a hull and exploded), it would do a lot of damage. It would also throw hot metal fragments and bits of blazing wood far and wide. Sails, tarred rope, and wood all burn readily.

  In 1853, the Russian Navy tested Paixhans’ theory. At the Battle of Sinope, a Russian squadron firing shells burned a 12-ship Turkish squadron. France and Britain, fearing the Russian capture of Constantinople and the entrance to the Black Sea, went to war with Russia. To counter the scary new “shell gun,”

  they turned to iron. In the ensuing Crimean War, the French used three armored floating batteries to demolish Russian forts. They followed that by launching, in 1859, La Gloire, the first armored, steam-powered battleship.

  Word that the Confederates were building an ironclad woke up authorities in Washington. Congress appropriated money for three armored ships, Galena, New Ironsides, and Monitor. The first two looked like conventional ships, but Monitor, the smallest, was revolutionary. Its deck was barely above the water. It had a 4-inch-thick belt of homogeneous armor and a revolving turret — the word’s first — made of 4-inch-thick iron. The two ironclads slugged it out for two hours.

  At one point, Virginia ran aground, but she backed into deeper water before Monitor could make a kill. Later, a shell from Virginia exploded on Monitor’s pilot house — a tiny, boxlike structure on her deck — wounding the captain.

  Monitor temporarily stopped firing, and Virginia took advantage of the pause to steam back to Norfolk and
the protection of the Confederate forts. Because Monitor stopped firing, the Confederates claimed a victory, and, because Virginia ran away, the Yankees claimed a victory. Actually, it was a draw, tactically. Strategically, the Confederates had been defeated. Virginia never again threatened a Union ship and the Confederates scuttled her when they had to abandon Norfolk.

  The affair at Hampton Roads was the first battle between ironclads, but it was hardly the only use of iron ships during the Civil War. The Union built a number of sea-going ironclads, including New Ironsides, which mounted the heaviest gun yet put on a ship and which won renown as a fort-destroyer, a whole fleet of monitors with one or two revolving turrets, and a swarm of ironclad river boats, which were instrumental in the Union’s victorious campaigns in the West. The Confederacy, too, built a number of ironclads, although its industrial capacity was limited. The biggest was the C.S.S. Tennessee, which was defeated and captured at the Battle of Mobile Bay. Tennessee, like Virginia, was a ram, a class of warship invented by the Confederates and used only in the Confederate Navy. The U.S.S. Monitor was also the original of a class of ships called monitors — small, low-lying ships with extremely heavy guns in revolving turrets. Monitors were used in many navies: the British and Austrians were using them in World War I. Neither the rams nor the monitors were good for ocean travel because their decks were so low, so neither type was the wave of the future.

  Armored ships with high freeboards were, however. Unlike the original ironclads — wooden ships covered with iron armor — the new warships were built entirely of iron and, later, steel. All steel construction made it possible to build them bigger and drive them with more powerful engines.

  The victories of Yi Sun Shin in the 16th century were spectacular, but they led to no permanent change in naval warfare. The indecisive fight between Virginia and Monitor, however, changed warfare permanently.

  Chapter 23

  “Damn the Torpedoes!”: Naval Mines

  From the Connecticut River Museum, Essex, Connecticut

  Reproduction of David Bushnell’s submarine, American Turtle, which failed to place a mine beneath a British frigate in 1776. This model, in the Connecticut River Museum in Essex, Connecticut, was actually tested and found to work as a navigable submarine.

  Drawing showing how Bushnell’s Turtle was operated.

  It was 1864, and only one port in the Confederate States — Mobile, Alabama — remained open. Now David Glasgow Farragut, commanding a fleet of four ironclad monitors and fourteen wooden ships, was attempting to close it. Mobile was heavily fortified, and in its harbor was the C.S.S. Tennessee, a huge armored ram, a larger version of the famed C.S.S. Virginia (nee Merrimack).

  Farragut was on the wooden frigate Hartford. When the battle began, Farragut wanted to be able to see what was happening, and he could get a better view from the tall Hartford than from one of the low-lying monitors. The old sea dog climbed a mast so his view wouldn’t be obscured by the smoke of Hartford’s guns. Farragut was not a young man: he was a veteran of the War of 1812. So a quartermaster tied him to the mast for safety. His age and long service in the navy had not made Farragut a tactical conservative. He sensibly positioned the monitors between the Confederate Fort Morgan and the more vulnerable wooden ships.

  Suddenly, the water under the lead monitor seemed to explode. The armored ship lurched, tipped up, and sank like a piece of iron. The Union fleet stopped.

  “There are torpedoes ahead,” someone told the commodore.

  “Damn the torpedoes! Full speed ahead!” the old man yelled.

  Crewmen on Hartford later said they could hear the “triggers of the torpedoes snapping” as the flagship steamed past them. Fortunately, none exploded.

  Then Tennessee tried to ram the Union flagship, but Farragut’s frigate was too agile for the armored monster. The monitor U.S.S. Chickasaw got behind Tennessee and pounded one spot with 11-inch cannonballs until it made a breach in the big ram’s armor. Chickasaw continued firing and the Confederate flagship filled with smoke. One shot cut the ram’s tiller chain, and another injured Confederate Admiral Franklin Buchanan. The Confederate ship surrendered.

  Farragut had closed the last Southern port in spite of the torpedoes.

  The torpedo (what we call a mine today) was a relatively new weapon in 1864. A few years before then, in 1829, a 14-year-old Yankee inventor named Sam Colt had demonstrated how an underwater powder charge could be set off by electricity. The demonstration did not increase young Colt’s popularity: Onlookers were showered with muddy water, but Colt showed how devastating a small charge of explosive could be when exploded against a boat under water.

  The water tamped the explosive, so that the greatest force of the explosion was directed against the boat.

  The Russians used mines during the Crimean War of 1855-56, but no ships were sunk. The first ship sunk by a mine was the gunboat U.S.S. Cairo at the Battle of Yazoo River in 1862.

  In 1866, a Scotsman and an Austrian invented a new kind of torpedo — one that went after an enemy ship instead of waiting to be hit. At first (as we’ll see in Chapter 26) the new weapon was called a “locomotive torpedo.” Later, it became simply the torpedo. That meant there had to be a new term for the stationary weapon. For centuries, stationary explosive charges had been placed in tunnels under enemy positions — in a mine (one that was dug to put something in rather than take something out). So the explosive charge buried in water instead of land became the naval mine or simply the mine.

  Although the new torpedo could chase enemy ships, the old mine did not become obsolete. Far from it. Mines have become a key part of just about all wars that involve ships. Weak naval powers depend on them heavily. Mines cost less than ships, but few ships can hit a mine and avoid a trip to Davy Jones’s Locker. Strong naval powers also used mines extensively. Both sides used mines in the Russo-Japanese War. The Russians lost a battleship, a cruiser, two destroyers, and a couple of smaller ships to Japanese mines. The Japanese Navy suffered more losses from mines than from any other weapon — two battleships, four cruisers, two destroyers, a torpedo boat, and a minelayer. In World War I, the British laid a “mine barrage” between Britain and Norway and between Britain and France to cut off Germany’s access to the Atlantic. Later, the British Navy, the world’s largest, was joined by the U.S. Navy, the world’s second largest at the time, and the two allies made the mine barrage practically leak-proof. Germany began to starve.

  Mines in the mine barrage were all moored mines. Belligerents sometimes used drifting mines, but a loose mine is worse than a loose cannon. One can seldom accurately predict where winds and currents will take a drifting mine, so it is a danger to neutral and friendly shipping. A moored (or anchored) mine, like a drifting mine, has enough air in it to float, but it is attached to a sinker. As the sinker sinks, it pays out a previously determine length of cable. When the predetermined length is reached, the sinker’s cable drum locks, and the sinker pulls the mine down to a predetermined depth below the surface.

  There are a variety of ways to detonate a mine. In World War I, the British used the Elia mine, which had a long lever attached to its side. If a ship struck the mine, it would probably move the lever, which would release a firing pin to strike the detonator. A more common mine, used by all belligerents in both world wars, relied on Hertz horns. The Hertz horn, a German invention, contained a glass vial with a bichromate solution. When the horn was crushed, the solution poured out of the broken vial and completed an electrical circuit that exploded the mine. A typical mine had Hertz horns protruding from all sides.

  Some mines planted close to the shore have been detonated by electricity shot through a cable from the shore. This type, however, requires an observer to decide when an enemy ship is close enough to the mine, so it’s much less popular than mines that set themselves off. Magnetic mines were widely used in World War II. The ship’s magnetic field triggered the mine’s firing mechanism.

  Because of magnetic mines, all steel naval sh
ips in World War II were equipped with degaussing cables. These were cables run around the gunwales of the ship.

  An electrical charge ran through the cables, neutralizing the ship’s magnetic field. “Limpet mines” used magnetism to attach themselves to the bottoms of ships. A United States model, intended to be attached by divers, had a plastic case and weighed only 10 pounds. It was attached by six magnets and had a timing mechanism that allowed divers to get away.

  An Italian mine of this type looked like something devised for the Japanese Imperial Navy, the home of the kamikazes. It was a long torpedo, straddled by two divers. The divers would steer their subsurface craft up to an enemy ship, detach the large warhead below the enemy ship, set the timing mechanism, and get away as fast as they could.

  The Italian “human torpedo” was designed to be launched by a submarine mother ship. Subs frequently laid mines, usually through their torpedo tubes.

  Other mines were parachuted into the water from airplanes. Some of them had sinker mechanisms for mooring them. Others, especially magnetic mines or those set off by the noise of a ship’s engines, merely lay on the bottom of the sea. These were, of course, most useful in relatively shallow waters.

  The mines Farragut encountered were defensive weapons. Almost all mines were defensive until World War II. In that war, though, the airplane and the submarine, particularly the former, allowed one country to mine an enemy’s harbors. Because the enemy had probably mined its own harbors, distinguish-ing friendly from enemy mines complicated the minesweepers’ task.

  Mines, unseen and almost undetectable, have added a spooky element to naval warfare that would have been utterly foreign to John Paul Jones.